Experimental research on the wall-wetting effects on the frictional property of the cylinder liner–piston ring pair

Author:

Xu Bo1ORCID,Yin Bifeng1ORCID,Jia Hekun1,Wei Mingliang2,Shi Kunpeng2

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

2. State Key Laboratory of Power System of Tractor, YTO Group Corporation, Luoyang, China

Abstract

The application of novel injection strategies (high-pressure injection, early injection, retarded injection, etc.) in combustion engines has made the wall-wetting problem severer. As the splashed fuel dilutes the lubricating oil, the tribological performance of the cylinder liner–piston ring pair will be affected. In this research, the viscosity and wettability tests were conducted firstly by mixing diesel into lubrication oil. It was found that the dynamic viscosity of the mixture drops with more fuel diluting the oil, and a small quantity of diesel mixed will cause a remarkable decline in lubricant viscosity; also, the contact angle shows a downward trend with the increasing diluting ratio. Then based on several typical diluting ratios, the reciprocating friction tests were carried out to measure the instantaneous friction force of the production ring/liner pair. The experimental results showed that under a mixed lubrication state, the peak friction force of the ring/liner pair occurs around the dead centers, while the minimum force occurs at the middle position of the reciprocating stroke; with more fuel diluting the oil, the bearing capacity of oil film degrades, resulting in the increase of friction force. In addition, the average friction coefficient of the ring/liner pair shows an upward trend with the increasing diluting ratio, and the Stribeck curve moves toward the upper-left, which means the lubrication condition of this pair tends to transit from mixed lubrication to boundary lubrication, causing negative effects on the frictional property of the cylinder liner–piston ring pair. Therefore, the diluting ratio should be controlled under 20%.

Funder

Open Fund of State Key Laboratory of Power System of Tractor

Priority Academic Program Development of Jiangsu Higher Education Institutions

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3