Experimental investigation of thermo-physical and tribological properties of oil-based graphene oxide nano-fluid using two types of polysorbate (tween 20 and tween 80)

Author:

Asgari Seyed Abbas1,Gholami Reyhaneh2,Tavakoli Nejad Mohammad Reza1,Allafchian Alireza3,Akbarzadeh Saleh1ORCID

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

2. Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA

3. Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan Iran

Abstract

In this paper, the effect of adding Reduced Graphene Oxide (RGO) nano-particles to engine base oil (Poly-Alpha-Olefin-PAO) on the thermo-physical properties of nano-fluid such as viscosity, thermal conductivity, and friction coefficient, are investigated numerically and experimentally. To keep the nano-fluid stable, before using ultrasonic waves, two types of polysorbate (tween 20 and tween 80) as surfactants were added to four concentrations of 0.01, 0.02, 0.0375, and 0.05 wt%, and the effects of nano-particles were studied to find the best combination in terms of viscosity, thermal conductivity, and friction coefficient, which made the nan-fluid quite stable during the tests procedure. The results showed with good accuracy that the final nano-fluid was Newtonian and its viscosity was very similar to the base oil. An increase of 7% was observed between 25 °C and 75 °C and for the concentration of 0.02 wt%. Thermal conductivity was raised in all states with an increase in concentration and the highest effect was 8% in the concentration of 0.05 wt%. The friction tests proved a desirable decrease of as much as 45% in friction coefficient compared to base oil and 28% compared to common anti-friction material used in industry for the optimum concentration which was 0.02 wt%. In addition, experimental data were compared to the models presented in the literature and the models that could describe the behavior of this nano-fluid in the best way were reported, and an empirical equation (for each surfactant) is developed to show the variation of COF with nano-particles weight fraction in the nano-fluid.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3