Affiliation:
1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
2. Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, USA
3. Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan Iran
Abstract
In this paper, the effect of adding Reduced Graphene Oxide (RGO) nano-particles to engine base oil (Poly-Alpha-Olefin-PAO) on the thermo-physical properties of nano-fluid such as viscosity, thermal conductivity, and friction coefficient, are investigated numerically and experimentally. To keep the nano-fluid stable, before using ultrasonic waves, two types of polysorbate (tween 20 and tween 80) as surfactants were added to four concentrations of 0.01, 0.02, 0.0375, and 0.05 wt%, and the effects of nano-particles were studied to find the best combination in terms of viscosity, thermal conductivity, and friction coefficient, which made the nan-fluid quite stable during the tests procedure. The results showed with good accuracy that the final nano-fluid was Newtonian and its viscosity was very similar to the base oil. An increase of 7% was observed between 25 °C and 75 °C and for the concentration of 0.02 wt%. Thermal conductivity was raised in all states with an increase in concentration and the highest effect was 8% in the concentration of 0.05 wt%. The friction tests proved a desirable decrease of as much as 45% in friction coefficient compared to base oil and 28% compared to common anti-friction material used in industry for the optimum concentration which was 0.02 wt%. In addition, experimental data were compared to the models presented in the literature and the models that could describe the behavior of this nano-fluid in the best way were reported, and an empirical equation (for each surfactant) is developed to show the variation of COF with nano-particles weight fraction in the nano-fluid.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献