Mechanism of Action of Colloidal Solid Dispersions

Author:

Chin˜as-Castillo F.1,Spikes H. A.2

Affiliation:

1. Instituto Tecnologico de Oaxaca, Wilfrido Massieu s/n, Oaxaca, Oax., Me´xico

2. Mechanical Engineering Department, Tribology Section, Imperial College, London, SW7 2BX, U.K.

Abstract

In the past there has been considerable interest in the possibility of using liquid lubricants containing dispersed, solid particles in the 1–50 micron size range to reduce friction and wear. These particles are used in greases and some industrial oils. Researchers are now directing their attention to the behavior of much smaller colloidal particles in the range of 5 nm to 200 nm diameter. Such systems are formally known as “colloidal sols” and have been claimed to influence friction and wear. Further reasons for studying such colloidal particles is that they are present in soot-contaminated engine lubricating oils, as wear debris and as partially-soluble additives. Thus, the objective of the work derived in this paper was to investigate the mechanism of action of colloidal solid particles in the range of 5 to 200 nm diameter in lubricating oils. Of particular interest was the effect of slide-roll ratio on particle entrainment and the influence of the ratio of particle diameter to elastohydrodynamic lubricant film thickness on particles’ behavior. This study has shown that in thin film contacts, colloid nanoparticles penetrate EHD contacts mainly by a mechanism of mechanical entrapment. It is found also that in rolling contacts at slow speeds, colloids formed a boundary film of at least 1 or 2 times the particle size. This film influence friction and wear. However, this film is lost at high speed and the film thickness reverts to the colloid-free fluid. The results of this study have enabled a mechanism of lubricating action by colloid sols to be derived.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3