Comparison of tribological performance of roller follower and flat follower under mixed elastohydrodynamic lubrication regime

Author:

Torabi Amir1,Akbarzadeh Saleh2,Salimpour Mohammadreza2

Affiliation:

1. Department of Engineering, Shahrekord University, Sharekord, Iran

2. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

In this study, a numerical model is developed to show the performance improvement of a cam–follower mechanism when using a roller type follower compared to the flat-faced follower. Nonconformal geometry besides the thermal effects due to the shearing of the lubricant film results in formation of a thin film in which the asperities contribute in carrying the load. The numerical model is developed in which the geometry, load, speed, lubricant properties, and the surface roughness profile is taken as input and the film thickness and friction coefficient as a function of cam angle are predicted. The asperities are assumed to have elastic, elasto-plastic, and plastic deformation. Simulation results indicated that the thermal effects cannot be neglected. Surface roughness is also a key parameter that affects the pressure distribution, film thickness, and friction coefficient. Finally, asperity and hydrodynamic pressure is reported and the performance of the two mechanisms is compared. Roller follower has a considerable preference in terms of friction coefficient compared to flat-faced follower. The minimum film thickness, however, is slightly larger in the flat follower.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3