The Protection of EGCG Against 6-OHDA-Induced Oxidative Damage by Regulating PPARγ and Nrf2/HO-1 Signaling

Author:

Xu Qi1,Chen Yujie1,Chen Dan2,Reddy Manju B2

Affiliation:

1. School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China

2. Iowa State University, Ames, IA, USA

Abstract

6-Hydroxydopamine (6-OHDA) is a classic neurotoxin that has been widely used in Parkinson’s disease research. 6-OHDA can increase intracellular reactive oxygen species (ROS) and can cause cell damage, which can be attenuated with (-)-Epigallocatechin-3-gallate (EGCG) treatment. However, the mechanism by which EGCG alters the 6-OHDA toxicity remains unclear; In this study, we found 6-OHDA (25 μM) alone increased intracellular ROS concentration in N27 cells, which was attenuated by pretreating with EGCG (100 μM). We evaluated the intracellular oxidative damage by determining the level of thiobarbituric acid reactive substances (TBARS) and protein carbonyl content. 6-OHDA significantly increased TBARS by 82.7% ( P < .05) and protein carbonyl content by 47.8 ( P < .05), compared to the control. Pretreatment of EGCG decreased TBARS and protein carbonyls by 36.4% ( P < .001) and 27.7% ( P < .05), respectively, compared to 6-OHDA alone treatment. Antioxidant effect was tested with E2-related factor 2 (Nrf2), heme oxygenase-1(HO-1) and peroxisome-proliferator activator receptor γ (PPARγ) expression. 6-OHDA increased Nrf2 expression by 69.6% ( P < .001), HO-1 by 173.3% ( P < .001), and PPARγ by 122.7% ( P < .001), compared with untreatment. EGCG pretreatment stabilized these alterations induced by 6-OHDA. Our results suggested that the neurotoxicity of 6-OHDA in N27 cells was associated with ROS pathway, whereas pretreatment of EGCG suppressed the ROS generation and deactivated the Nrf2/HO-1 and PPARγ expression.

Funder

iowa state university

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3