Microstructural Measures of the Inferior Longitudinal Fasciculus Predict Later Cognitive and Language Development in Infants Born With Extremely Low Birth Weight

Author:

Bugada Matthew C.1ORCID,Kline Julia E.1,Parikh Nehal A.123

Affiliation:

1. Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

2. Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA

3. Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, USA

Abstract

Objective: Extremely preterm children are at high risk for adverse neurodevelopmental outcomes. Identifying predictors of discrete developmental outcomes early in life would allow for targeted neuroprotective therapies when neuroplasticity is at its peak. Our goal was to examine whether diffusion magnetic resonance imaging (MRI) metrics of the inferior longitudinal and uncinate fasciculi early in life could predict later cognitive and language outcomes. Study Design: In this pilot study, 43 extremely low-birth-weight preterm infants were scanned using diffusion MRI at term-equivalent age. White matter tracts were assessed via diffusion tensor imaging metrics of fractional anisotropy and mean diffusivity. The Language and Cognitive subscale scores of the Bayley Scales of Infant & Toddler Development-III at 18-22 months corrected age were our outcomes of interest. Multiple linear regression models were created to assess diffusion metrics of the inferior longitudinal and uncinate fasciculi as predictors of Bayley scores. We controlled for brain injury score on structural MRI, maternal education, birth weight, and age at MRI scan. Results: Of the 43 infants, 36 infants had high-quality diffusion tensor imaging and returned for developmental testing. The fractional anisotropy of the inferior longitudinal fasciculus was associated with Bayley-III scores in univariate analyses and was an independent predictor of Bayley-III cognitive and language development over and above known predictors in multivariable analyses. Conclusions: Incorporating new biomarkers such as the fractional anisotropy of the inferior longitudinal fasciculus with structural MRI findings could enhance accuracy of neurodevelopment predictive models. Additional research is needed to validate our findings in a larger cohort.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

SAGE Publications

Subject

Clinical Neurology,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3