Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation

Author:

Ghorbanpour Arani A1,Zamani MH1

Affiliation:

1. Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

In the present research electro-mechanical bending behavior of sandwich nanoplate with functionally graded porous core and piezoelectric face sheets is carried out. Vlasov’s model foundation is utilized to model the silica Aerogel foundation. Two functions are considered for nonuniform variation of material properties of the core layer along the thickness direction such as Young’s modulus, shear modulus, and density. The governing equations are deduced from Hamilton’s principle based on sinusoidal shear and normal deformation theory. In order to solve seven governing equations, an iterative technique is accomplished. After all, deflection and stresses are verified with corresponding literatures. Eventually, the numerical results reveal that applied voltage, plate aspect ratio, thickness ratio, nonlocal parameter, porosity index, Young’s modulus, and height of silica Aerogel foundation have substantial effects on the electro-mechanical bending response of functionally graded porous sandwich nanoplate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3