Quasi-static indentation and impact in glass-fibre reinforced polymer sandwich panels for civil and ocean engineering applications

Author:

Garrido M1ORCID,Teixeira R1,Correia JR1,Sutherland LS2

Affiliation:

1. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

2. CENTEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Abstract

Sandwich structures comprising glass-fibre reinforced polymer faces and low-density core constitute an efficient and versatile constructive system for civil and ocean engineering structures. However, being multilayered with relatively soft core materials, they are particularly susceptible to damage under concentrated loads. Whilst numerous studies exist on the indentation and impact behaviour of sandwich composites, the great majority considers the thin-skinned laminates used by the aeronautical industry. To mitigate the lack of studies on the significantly thicker and more robust civil and ocean engineering sandwich laminates, the quasi-static indentation and low-velocity impact behaviour of such panels is experimentally studied. Three types of core materials (polyurethane and polyethylene terephthalate foams and end-grain balsa) and five different indenters, of varying shape (hemispherical versus flat) and diameter (10, 20 and 30 mm), are considered. Flat and larger indenters required higher loads and energies for first damage and perforation. The first damage and peak resistance values of the polyethylene terephthalate panels were, respectively, 15 and 8% higher than in the polyurethane panels; for the balsa panels, such figures were 20 and 10%. The polyurethane panels showed the highest energy absorption capacity. Predictions of first damage resistance given by two analytical models (for flat and hemispherical indenters) were assessed against the gathered experimental data. The obtained predictions were reasonably accurate, but indicate a need for further calibration, mainly concerning the effects of core material.

Funder

Portuguese National Innovation Agency

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3