Crashworthiness analysis and optimization of different configurations multi-layered corrugated sandwich panels under crush loading

Author:

Shu Chengfu1ORCID,Hou Shujuan23,Zhang YX4,Luo Yutao1

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China

2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China

3. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China

4. School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, Australia

Abstract

Multi-layered corrugated sandwich panels can be made up of different core shapes, different arrangements, the variable height, and variable thickness in every layer. In this paper, the crashworthiness behaviors of multi-layered corrugated sandwich panels with different configurations, which are controlled by these four factors, are analyzed and compared. The optimal configuration is found by adopting orthogonal experimental design and range analysis method. A novel multi-layered corrugated sandwich structure with functionally graded thickness is proposed and studied and is proved to better structural crashworthiness. First, finite element models of multi-layered corrugated sandwich panels are established and validated by experiment. Then, the effect of the four factors with three levels on crashworthiness is analyzed, and we obtain the main factor and the optimal configuration with the maximum specific energy absorption by using orthogonal experimental design and range analysis method. Finally, parametric studies and multi-objectives optimization of the proposed novel multi-layered corrugated sandwich structure with functionally graded thickness are conducted. The optimization is aimed at maximizing the specific energy absorption and minimizing the initial peak force under crush loading, based on the non-dominated sorting genetic algorithm and response surface method technique. These findings can provide valuable guidelines for the design of multi-layered corrugated sandwich panels with different configurations under crush loading.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3