Failure behaviour of grid-scored foam cored composite sandwich panels for wind turbine blades subjected to realistic multiaxial loading conditions

Author:

Laustsen S12,Lund E1,Kühlmeier L2,Thomsen OT13

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Aalborg University, Denmark

2. SE Blades Technology, Denmark

3. Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton, UK

Abstract

The load response and failure behaviour of ‘grid-scored’ sandwich panels used in wind turbine blades have been investigated. This paper presents the results of a combined experimental and numerical investigation of the load response and failure behaviour of a specific grid-scored foam cored composite sandwich panel configuration subjected to multiaxial quasi-static loading conditions that are representative for realistic loading conditions present in wind turbine blades. From the experimental evidence a criterion based on fracture mechanics has been proposed for predicting the onset of fracture in the resin grid. The criterion can be applied directly in conjunction with finite element modelling based on 3D solid elements where the resin grid in situ the core is fully modelled. However, since most full-scale blade models are based on first-order shear deformation theory where the core properties normally are homogenised a strain-based failure criterion is also proposed. The input for this failure criterion is the allowable resin grid strain, which can be obtained from a simple uniaxial tension test of a grid-scored sandwich beam specimen. The predictions of the criteria have been compared with the experimental observations, and a good correlation has been found.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3