An investigation on the flexural properties of balsa and polymer foam core sandwich structures: Influence of core type and contour finishing options

Author:

Fathi Amir1,Wolff-Fabris Felipe1,Altstädt Volker1,Gätzi Roman2

Affiliation:

1. Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany

2. Airex AG, Sins, Switzerland

Abstract

Polymer foams are frequently used as core materials in sandwich structures for applications such as aerospace, naval, and wind industry. It is known that the core material contributes to the overall mechanical properties of these sandwich structures up to a remarkable extent. In addition, due to the curvature and geometrical complexities of several applications, these cores are available with special cuts/grooves (finishing options) to provide bendability and better resin infusion during processing. The goal of this study is to investigate the mechanical performance of synthetic polymer foams as core materials for sandwich structures. Balsa wood, which is the most common traditional structural core, was used as reference material. Glass fiber reinforced epoxy was employed as face sheets. End-grain Balsa wood, commercially available polyvinyl chloride and polyethylene terephthalate, and experimental grades of polyurethane foams were chosen as alternative core materials. Quasi-static flexural tests were carried out using a four-point bending setup according to ASTM C 393. Sandwich properties such as stiffness, core shear strength, and energy absorption were determined and compared. The contour cuts filled with resin show a reinforcing effect against transverse shear stresses leading to higher shear strengths. Digital image correlation was used to study the yielding and permanent strain of the foam core sandwich beams.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3