Static cushioning energy absorption of paper composite sandwich structures with corrugation and honeycomb cores

Author:

Guo Yanfeng1,Han Xuxiang1ORCID,Wang Xingning1,Fu Yungang1,Xia Ronghou1

Affiliation:

1. Department of Packaging Engineering, Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, Shaanxi Province, PR China

Abstract

In view of cushioning energy absorption of paper composite sandwich structures with sinusoidal corrugation and hexagonal honeycomb cores, the static yield strength and compression deformation were firstly analyzed by experiments, then the unit volume energy absorption, unit area energy absorption, and specific energy absorption were evaluated. Further, the influences of static compression rate, corrugation types, and honeycomb thickness on the cushioning energy absorption were respectively studied. The experimental observations show that the paper composite sandwich structures are crushed layer by layer due to the difference in the yield strength of sandwiches, and the honeycomb core is crushed after the collapsing of corrugation core. The three evaluation indices of cushioning energy absorption have similar change rule with the compression rate, corrugation types, and honeycomb thickness. The influence of static compression rate on the yield strength and cushioning energy absorption of the paper composite sandwich structure is not obvious. The composite sandwich structures consisting of paper corrugation sandwich with large inertia moment and honeycomb sandwich with large thickness have more excellent cushioning energy absorption, the B-corrugation can increase the unit volume energy absorption of paper composite sandwich structures by up to 18% than C-corrugation, and the 3-honeycomb can increase the unit volume energy absorption of paper composite sandwich structures by up to 32% than 2-honeycomb.

Funder

the Foundation of Xi'an Science and Technology Bureau

the Foundations of Shaanxi Province Science and Technology Department

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3