Energy absorption and damage mechanism of UHMWPE-aluminum composite sandwich laminate under impact loading: An experimental investigation

Author:

Mansoori Hassan1,Zakeri Mahnaz1ORCID,Guagliano Mario2

Affiliation:

1. Advanced Structures Research Laboratory, Aerospace Engineering Department, K. N. Toosi University of Technology, Tehran, Iran

2. Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy

Abstract

This study investigates impact behavior and energy absorption of a Fiber Metal Laminate (FML) made of ultra-high molecular weight polyethylene (UHMWPE) fiber composite and aluminum 2024-T3 sheets. Specimens have been tested against two types of projectiles and failure modes are compared. The effect of different thicknesses of aluminum sheets and composite core on impact performance is investigated. To examine the influence of the lay-up sequence, two types of FML including 2/1 and 3/2 configurations have been tested. The results show that increasing the thickness of the composite core increases the absorption of energy as well as specific energy absorption (SEA). The highest amount of SEA is obtained for the sample with the lowest metal volume fraction. Damage patterns show that due to the flexibility of UHMWPE fibers and ductility of Al 2024-T3, the metal and the composite core have been deformed proportionally and more energy is absorbed. This mechanism is not seen in other conventional FMLs such as glass fiber metal laminate (GLARE). Compared with aluminum sheet and GLARE under the same conditions, the proposed FML has SEA more than 3 times that of aluminum and more than 2 times that of GLARE.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3