High‐velocity ballistic response of AA 1100‐H14 based carbon‐fiber metal laminates: An experimental investigation

Author:

Jamsheed Mohammed1,Rashid Faizan Mohammad1ORCID,Velmurugan R.2

Affiliation:

1. Department of Mechanical Engineering Birla Institute of Technology and Sciences Pilani, Pilani Campus Pilani India

2. Department of Aerospace Engineering Indian Institute of Technology Madras Chennai India

Abstract

AbstractA detailed experimental investigation was carried out for the high‐velocity ballistic response of AA 1100‐H14 based carbon‐fiber metal laminates (FMLs). FMLs with different metal volume fractions and the same thickness of carbon‐epoxy fiber laminates were tested to examine the surface and internal damage. The ballistic performance parameters, namely % escalation in absorbed energy, specific energy absorbed, ballistic limit, specific perforation energy, first cracking energy, and global deformation profile, were studied and a comparison was drawn with pure carbons fiber reinforced epoxy composite laminates. Despite having greater thickness, pure carbon fiber‐reinforced epoxy composite laminates absorbed less impact energy than FMLs and failed catastrophically. For FMLs, the % escalation in the absorbed energy and the specific energy absorption kept increasing with the increasing impact velocity until the onset of perforation. Once the perforation started, both these parameters showed a decreasing trend. Thick FMLs absorbed a good amount of energy, leading to projectile recoil suffering minimal damage. The ballistic velocity, specific perforation energy, and first cracking energy on the front and rear face of FMLs layers showed an increasing trend. The minimum for the thinner and maximum for the thicker FMLs attributed to the large thickness and more metal volume fraction. Contrary to the large deformation of the impacting points, pure carbon fiber‐reinforced epoxy composite laminates showed very minimal deformation as compared to FMLs. The brittle nature of the epoxy resin resisted the deformation to a large extent leading to less energy absorption.Highlights High‐velocity ballistic response of AA 1100‐H14 based carbon‐FMLs was investigated. Ballistic performance parameters of FMLs were studied and was compared with carbons fiber reinforced composite laminates. The ballistic limit of FMLs showed a direct dependence its thickness and metal volume fraction. In the absence of any metallic layer, pure carbons fiber reinforced composite laminates absorbed less impact energy.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3