Synchroextracting frequency synchronous chirplet transform for fault diagnosis of rotating machinery under varying speed conditions

Author:

Ding Chuancang1ORCID,Huang Weiguo1,Shen Changqing1,Jiang Xingxing1,Wang Jun1ORCID,Zhu Zhongkui1ORCID

Affiliation:

1. School of Rail Transportation, Soochow University, Suzhou, China

Abstract

The fault diagnosis of rotating machine is essential to maintain its operational safety and avoid catastrophic accidents. The vibration signals collected from the varying speed rotating machinery are non-stationary, and time–frequency analysis (TFA) is a feasible method for varying speed fault diagnosis by revealing time-varying instantaneous frequency (IF) information in signals. However, most conventional TFA methods are not specifically designed for rotating machinery vibration signals and may not be able to handle these signals, especially in the presence of noise. Therefore, this paper develops a unique TFA method designated as synchroextracting frequency synchronous chirplet transform (SEFSCT) for vibration signal analysis and fault diagnosis of rotating machinery. In the proposed method, the frequency synchronous chirplet transform (FSCT) that utilizes the frequency synchronous chirp rate is first introduced, which takes fully into account the intrinsic proportional relationship of time-varying IFs of the signal. Then, to further concentrate the time–frequency representation (TFR) of FSCT, the synchroextracting operator is constructed based on the Gaussian modulated linear chirp model and the SEFSCT is naturally developed by integrating the FSCT and synchroextracting operator. With the proposed SEFSCT, a high-quality TFR can be generated, thus the time-varying IFs and mechanical failure can be accurately identified. The SEFSCT is employed to deal with synthetic and actual signals, and the results illustrate its efficacy in handling non-stationary signals and diagnosing the mechanical failure.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3