Structural damage detection based on fundamental Bayesian two-stage model considering the modal parameters uncertainty

Author:

Zhang Feng-Liang1,Gu Dong-Kai1,Li Xiao1,Ye Xiao-Wei2ORCID,Peng Huayi1ORCID

Affiliation:

1. School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China

2. Department of Civil Engineering, Zhejiang University, Hangzhou, China

Abstract

In structural health monitoring (SHM), damage detection is a final target to know the real status of the objective structure. Vibration-based damage detection is a commonly used method, since it makes full use of the dynamic characteristics. Improving the efficiency of this kind of methods has attracted increasing attentions. The existing uncertainty of identified modal parameters using measured data may significantly affect the detection accuracy. Furthermore, an optimization algorithm with a better convergence speed can improve the detection accuracy and reduce the computational time. This article presents the work to develop a novel damage detection method based on fundamental Bayesian two-stage model and sparse regularization. In this method, the most probable value of modal parameters and the associated posterior uncertainty are combined to investigate the effect of uncertainty on damage detection. The usage of the sparse regularization in the objective function can decrease the complexity of modeling and avoid the overfitting problem. A machine learning method combining intelligent swarm optimization algorithm with K-means clustering was used to carry out the optimization. Finally, a method combining three existing theory, that is, fundamental Bayesian two-stage model, sparse regularization, and I-Jaya algorithm, was developed. To investigate the efficiency of the proposed method, the traditional objective functions with and without the sparse regularization were also used for the comparison. The proposed method was verified by an ASCE benchmark example, and then it is applied into an experimental structure. The results show that due to the consideration of uncertainty, the objective function based on the fundamental Bayesian model and sparse regularization has a better performance.

Funder

Characteristic and Innovation Projects of Universities in Guangdong Province

Shenzhen Science and Technology Innovation Committee

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration

Natural Science Foundation of Shenzhen

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3