MEMS-Based Vibration Acquisition for Modal Parameter Identification of Substation Frame

Author:

Qiang Ruochen1,Sheng Ming2,Su Dongxu2,Wang Yachen2,Liu Xianghong2,Sun Qing2

Affiliation:

1. Economic Research Institute, State Grid Shaanxi Electric Power Company, Xi’an 710075, China

2. Department of Civil Engineering, Xi’an Jiaotong University, Xi’an 710064, China

Abstract

As a critical component of substations, the substation frames are characterized by significant height and span, which presents substantial challenges and risks in conducting dynamic response tests using traditional sensors. To simplify these difficulties, this paper introduces an experimental method utilizing MEMS sensor-based vibration acquisition. In this approach, smartphones equipped with MEMS sensors are deployed on the target structure to collect vibration data under environmental excitation. This method was applied in a dynamic field test of a novel composite substation frame. During the test, the proposed MEMS-based vibration acquisition method was conducted in parallel with traditional ultra-low-frequency vibration acquisition methods to validate the accuracy of the MEMS data. The results demonstrated that the MEMS sensors not only simplified the testing process but also provided reliable data, offering greater advantages in testing convenience compared with traditional contact methods. The modal parameters of the substation frame, including modal frequencies, damping ratios, and mode shapes, were subsequently identified using the covariance-driven stochastic subspace identification method. The experimental methodology and findings presented in this paper offer valuable insights for structural dynamic response testing and the wind-resistant design of substation frames.

Funder

National Natural Science Foundation of China

State Grid Shaanxi Electric Power Co., Ltd. Science and technology project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3