Evaluation of machine learning techniques for structural health monitoring using ultrasonic guided waves under varying temperature conditions

Author:

Abbassi Abderrahim1ORCID,Römgens Niklas1,Tritschel Franz Ferdinand1,Penner Nikolai1,Rolfes Raimund1

Affiliation:

1. Institute of Structural Analysis, Leibniz Universität Hannover, Hanover, Germany

Abstract

The implementation of machine learning methods for structural health monitoring applications has proven to be very effective, especially in detecting damage and compensating for environmental and operational conditions. The use of guided waves in this area has also shown to be a powerful tool due to their sensitivity to structural changes in the propagation medium. In this work, two strategies for detecting damage and distinguishing their positions and for dealing with temperature variations without an additional classical temperature compensation technique are investigated. For this purpose, four unsupervised dimensionality reduction learning methods were used and compared: Principal Component Analysis, Kernel Principal Component Analysis, t-distributed stochastic neighbour embedding and Autoencoder. The first strategy (score plot) consists of using the latent dimensions directly to distinguish the data points of different states of the structure, and the second (DI plot) proposes a method to use Q- and T2-statistics, which have been proposed in previous work for PCA, computed using the compressed representation of the monitoring data. To this end, monitoring data from intact and damaged states of a 500x500x2 mm plate of carbon-fibre–reinforced polymer recorded by 12 piezoelectric transducers at different temperatures are examined. As a reversible damage model, a 10 mm thick aluminium disc is placed at four different locations on the plate. The results primarily show the success of the methods used with DI plot in detecting damage regardless of varying temperature. The autoencoder in the first strategy also demonstrates promising performance in detecting and distinguishing the position of the damage, even in the presence of varying temperature conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference59 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3