Design of Ultrasonic Guided Wave Pipeline Non-Destructive Testing System Based on Adaptive Wavelet Threshold Denoising

Author:

Huang Si-Yu1,Guo Ying-Qing1ORCID,Zang Xu-Lei2,Xu Zhao-Dong2

Affiliation:

1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

2. China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures, Southeast University, Nanjing 210096, China

Abstract

Guided wave ultrasonic testing (GWUT) within the realm of pipeline inspection is an efficacious approach; however, current GWUT systems are characterized by high costs and power consumption, and their detection results are significantly susceptible to noise interference. Addressing these issues, this study introduces a GWUT system predicated on adaptive wavelet threshold denoising, centered around a low-power main controller, achieving cost-effective and low-power-consumption pipeline non-destructive testing (NDT) with clear results. The system employs an STM32 as the main controller and utilizes direct digital frequency synthesis (DDS) technology to generate ultrasonic excitation signals. These signals, after power amplifier processing, ensure high-stability output for the driving signal. In conjunction with the signal acquisition module, digital filtering of the collected signals is executed via the host computer. Empirical validation has demonstrated that the system can achieve an output amplitude of up to 90 Vpp within an excitation frequency range of 20 kHz–400 kHz, directly driving piezoelectric transducers. The optimal threshold is identified using the butterfly optimization algorithm, enabling the wavelet threshold function to adaptively denoise the echo signals, thereby significantly enhancing the capability to identify pipeline damage.

Funder

Major Project of Fundamental Research on Frontier Leading Technology of Jiangsu Province

Basic Science (Natural Science) Research General Projects in Higher Education Institutions of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3