Structural damage monitoring for metallic panels based on acoustic emission and adaptive improvement variational mode decomposition–wavelet packet transform

Author:

Li Yang1ORCID,Xu Feiyun1ORCID

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing, People’s Republic of China

Abstract

The metallic panel acoustic emission signal with strong non-stationary properties is normally composed of multiple components (e.g. impulses, background noise, and other external signal), where impulses relevant to metallic panel are easily contaminated by background noise and other external signal, making it difficult to excavate the inherent acoustic emission signal features. To address this issue and achieve the damage monitoring of metallic panels based on acoustic emission technology, a new scheme based on adaptive improvement variational mode decomposition–wavelet packet transform is developed for extracting acoustic emission signal features of metallic panels. Specifically, three different dimensions of Q235B steel plates are utilized to collect acoustic emission signal during three-point bending experiments, to evaluate the effectiveness of the proposed approach and to investigate the influence of size effect on the acoustic emission signal characteristics. In addition, the transient process and centroid frequency distribution of each damage stage are investigated, and the internal structure variations in the bending damage process are detected by scanning electron microscopy inspection. Moreover, the generalization of the proposed damage monitoring method is evaluated for plate-like structures that have complex geometric features, such as welds. The results demonstrate the effectiveness of the proposed method for acoustic emission–based structural health monitoring of metallic plate-like structures.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province, China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3