Investigation on damage behaviors of carbon fiber‐reinforced nylon 6 thermoplastic composite laminates using acoustic emission and digital image correlation  techniques

Author:

Zhu Jixin1,Hu Kejun1ORCID,Han Wenqin1,Shi Qinghe1,Wang Yingming1,Zhao Fengling1,Zhu Fuxian1

Affiliation:

1. School of Materials Engineering Jiangsu University of Technology Changzhou China

Abstract

AbstractThe objective of this paper is to analyze the mechanical properties and damage mechanisms of carbon fiber‐reinforced polyamide thermoplastic composite laminates. Four specimens with different ply orientations were designed for open‐hole tensile experiments, and interlaminar toughness experiments including double cantilever beam and end‐notched flexural were carried out. The experimental process was monitored synchronously using acoustic emission, and the strain field changes of the tensile specimens were captured using digital image correlation technology. The unsupervised clustering of the peak frequencies of the acoustic emission signals based on the K‐means++ algorithm was employed to ascertain the peak frequency ranges corresponding to the various damage modes. Typical signals from different specimens were selected, and the gray wolf algorithm was used to optimize the variational modal parameters to decompose the signals. The waveform characteristics, frequency components, and Hilbert spectra of each damage mode were given. The correlation analysis of the intrinsic mode function (IMF) components of the same damage in different specimens demonstrated that the IMF components exhibited high similarity. By analyzing the time series changes in the energy of each damage mode in different specimens, the contribution of different damage modes to the evolution of laminated plate damage was evaluated.Highlights The mechanical properties of CF/PA6 laminates were investigated based on open‐hole tensile specimens and pre‐cracked delamination specimens. Unsupervised clustering of AE peak frequencies using K‐means++ to establish the relationship between peak frequencies and damage patterns. AE counts and cumulative energy were used to assess damage evolution. By identifying a single damage signal and providing a more intuitive treatment of the damage energy evolution.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3