A new power-based method to determine the first arrival information of an acoustic emission wave

Author:

Das Avik Kumar1ORCID,Leung Christopher KY1

Affiliation:

1. The Hong Kong University of Science and Technology, Kowloon, Hong Kong

Abstract

Acoustic emission is a powerful experimental structural health monitoring technique for determining the location of cracks formed in a member. Pinpointing wave arrival time is essential for accurate source location. Conventional arrival detection technique’s accuracy deteriorates rapidly in low signal to noise ratio (5–40 dB) region, thus unsuitable for source location due to this inaccuracy. A new technique to pinpoint the arrival time based on the power of the wave is proposed. We have designed an adaptive filter based on the power characteristics of acoustic emission wave. After filtration of the acoustic emission wave, sliding window is employed to accurately identify the region of wave arrival based on the change in transmitted power. The results from various experimental and numerical arrival time detection experiments consistently show that the proposed methodology is stable and accurate for a wide range of signal to noise ratio values (5–100 dB). Particularly, in signal to noise ratio region (5–40 dB), the method is significantly more accurate as compared to the other methods described in the literature. The method was then employed to study the localized damage progression in a steel fiber–reinforced beam under four-point bending. The results suggest that calculated source location using the new method is consistent with that from visual inspection of the member at failure and more accurate than the localization results from existing method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3