Design of a new low-cost unmanned aerial vehicle and vision-based concrete crack inspection method

Author:

Lei Bin1,Ren Yali2,Wang Ning3,Huo Linsheng4,Song Gangbing3ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Wuhan University of Science and Technology, Wuhan, China

2. School of Computer Science, College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

3. Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA

4. School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian, China

Abstract

With the explosive development of the computer vision technology, more and more vision-based inspection methods enabled by unmanned aerial vehicle technologies have been researched on the crack inspection of the sundry concrete structures. However, because of the limitation of the low-cost unmanned aerial vehicle hardware, whose cost is around US$500, most of the vision-based methods are difficult to be implemented on the low-cost unmanned aerial vehicle for real-time crack inspection. To address this challenge, in this article, a new computationally efficient vision-based crack inspection method is designed and successfully implemented on a low-cost unmanned aerial vehicle. Furthermore, to reduce the acquired data samples, a new algorithm entitled crack central point method is designed to extract the effective information from the pre-processed images. The proposed vision-based crack detection method includes the following three major components: (1) the image pre-processing algorithm, (2) crack central point method, and (3) the support vector machine model–based classifier. To demonstrate the effectiveness of the new inspection method, a concrete structure inspection experiment is implemented. The experimental results indicate that this new method is able to accurately and rapidly inspect the cracks of concrete structure in real time. This new vision-based crack inspection method shows great promise for the practical application.

Funder

National Natural Science Foundation of China

Research Project of Hubei Provincial Department of Education

General Project of Natural Science Foundation of Jiangsu Province of China

major state basic research development program of china

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3