A scientometric analysis of drone-based structural health monitoring and new technologies

Author:

Fayyad Tahreer M1ORCID,Taylor Su1,Feng Kun2ORCID,Hui Felix Kin Peng3

Affiliation:

1. Intelligent and Sustainable Infrastructure Group, School of Natural and Built Environment, Queen’s University Belfast, Belfast, UK

2. School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK

3. Engineering Management Group, Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC, Australia

Abstract

Critical global challenges, such as climate change and the insufficient availability of resources, mean that it is a pivotal time to make cities more intelligent, efficient, and sustainable in a drive towards a net-zero carbon future. This requires intelligent, interactive, and responsive structural health monitoring (SHM) to assure the longevity and safety of ageing infrastructure. Drones have the potential to revolutionise SHM. Drone-based SHM (as a potential fly-by technique) involves equipping drones with various sensors, or using inbuilt sensors, to capture data and images of structures from different angles and perspectives. The data is then processed and analysed to facilitate accurate assessment of the structure’s health and early diagnosis of damage. Although the use of fly-by is relatively new, the speedy advances in various technologies that could be integrated with it, such as computer vision with artificial intelligence, deep learning, and links to digital twins, put these systems on the verge of a potential breakthrough. This paper provides an overview of fly-by SHM technique using both scientometric and qualitative systematic literature review processes, in order to provide a distinct understanding of the state of the art of research. As an original contribution, our research identified four main clusters of research within the field of fly-by SHM: (1) the application of UAV-enabled vision-based monitoring; (2) the integration of drones, advanced sensor technologies, and artificial intelligence; (3) drone-based SHM integrating modal analysis, energy harvesting, and deep learning; and (4) automation and robotics in drone-based SHM. The paper highlights the integration of new technologies such as artificial intelligence, machine learning, and sensors with the fly-by technique for SHM, identifies the gaps in current fly-by SHM research, and suggests new directions for research.

Funder

EPSRC

Royal Society

Daphne Jackson Trust

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3