Affiliation:
1. Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
Abstract
Prognostics and health management (PHM) is an emerging technique which aims to improve the reliability and safety of machinery systems. Remaining useful life (RUL) prediction is the key part of PHM which provides operators how long the machine keeps working without breakdowns. In this study, a novel prognostic model is proposed for RUL prediction using deep wavelet sequence-based gated recurrent units (GRU). This proposed wavelet sequence-based gated recurrent unit (WSGRU) specifically adopts a wavelet layer and generates wavelet sequences at different scales. Since vibration signals exhibit non-stationary characteristics, wavelet analysis is thereby needed to capture both the time and frequency domain information to fully identify the degradation of the rotating components. In the proposed WSGRU, the vibration signals are decomposed into different frequency sub-bands via wavelet transformation, and then a deep GRU architecture is designed to predict the RUL taking advantage of the temporal dependencies that naturally exist in the waveforms. Experimental studies have been performed for RUL prediction of bearings with collection of vibration signals during the run-to-failure tests. The prediction results show that deep WSGRU outperforms traditional models due to the multi-level feature extraction on the transformed multiscale wavelet sequences.
Funder
Air Force Office of Scientific Research
Subject
Mechanical Engineering,Biophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献