A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction

Author:

Chen Xinping

Abstract

AbstractAccurate prediction of remaining useful life (RUL) for aircraft engines is essential for proactive maintenance and safety assurance. However, existing methods such as physics-based models, classical recurrent neural networks, and convolutional neural networks face limitations in capturing long-term dependencies and modeling complex degradation patterns. In this study, we propose a novel deep-learning model based on the Transformer architecture to address these limitations. Specifically, to address the issue of insensitivity to local context in the attention mechanism employed by the Transformer encoder, we introduce a position-sensitive self-attention (PSA) unit to enhance the model's ability to incorporate local context by attending to the positional relationships of the input data at each time step. Additionally, a gated hierarchical long short-term memory network (GHLSTM) is designed to perform regression prediction at different time scales on the latent features, thereby improving the accuracy of RUL estimation for mechanical equipment. Experiments on the C-MAPSS dataset demonstrate that the proposed model outperforms existing methods in RUL prediction, showcasing its effectiveness in modeling complex degradation patterns and long-term dependencies.

Funder

Chongqing Technical Innovation and Application Development Special General Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3