Damage detection in a novel deep-learning framework: a robust method for feature extraction

Author:

Guo Tian1,Wu Lianping1,Wang Cunjun1,Xu Zili1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, P.R. China

Abstract

Extracting damage features precisely while overcoming the adverse interferences of measurement noise and incomplete data is a problem demanding prompt solution in structural health monitoring (SHM). In this article, we present a deep-learning-based method that can extract the damage features from mode shapes without utilizing any hand-engineered feature or prior knowledge. To meet various requirements of the damage scenarios, we use convolutional neural network (CNN) algorithm and design a new network architecture: a multi-scale module, which helps in extracting features at various scales that can reduce the interference of contaminated data; stacked residual learning modules, which help in accelerating the network convergence; and a global average pooling layer, which helps in reducing the consumption of computing resources and obtaining a regression performance. An extensive evaluation of the proposed method is conducted by using datasets based on numerical simulations, along with two datasets based on laboratory measurements. The transferring parameter methodology is introduced to reduce retraining requirement without any decreases in precision. Furthermore, we plot the feature vectors of each layer to discuss the damage features learned at these layers and additionally provide the basis for explaining the working principle of the neural network. The results show that our proposed method has accuracy improvements of at least 10% over other network architectures.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3