Application of Graph Convolutional Neural Networks Combined with Single-Model Decision-Making Fusion Neural Networks in Structural Damage Recognition

Author:

Li Xiaofei1ORCID,Xu Langxing1,Guo Hainan2,Yang Lu1

Affiliation:

1. College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China

2. Beijing Key Laboratory of Earthquake Engineering and Structure Retrofit, University of Technology Beijing, Beijing 100124, China

Abstract

In cases with a large number of sensors and complex spatial distribution, correctly learning the spatial characteristics of the sensors is vital for structural damage identification. Graph convolutional neural networks (GCNs), unlike other methods, have the ability to learn the spatial characteristics of the sensors, which is targeted at the above problems in structural damage identification. However, under the influence of environmental interference, sensor instability, and other factors, part of the vibration signal can easily change its fundamental characteristics, and there is a possibility of misjudging structural damage. Therefore, on the basis of building a high-performance graphical convolutional deep learning model, this paper considers the integration of data fusion technology in the model decision-making layer and proposes a single-model decision-making fusion neural network (S_DFNN) model. Through experiments involving the frame model and the self-designed cable-stayed bridge model, it is concluded that this method has a better performance of damage recognition for different structures, and the accuracy is improved based on a single model and has good damage recognition performance. The method has better damage identification performance in different structures, and the accuracy rate is improved based on the single model, which has a very good damage identification effect. It proves that the structural damage diagnosis method proposed in this paper with data fusion technology combined with deep learning has a strong generalization ability and has great potential in structural damage diagnosis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3