Deep learning-based obstacle-avoiding autonomous UAVs with fiducial marker-based localization for structural health monitoring

Author:

Waqas Ali1,Kang Dongho2,Cha Young-Jin1ORCID

Affiliation:

1. Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada

2. Ericsson, Toronto, ON, Canada

Abstract

This paper proposes a framework for obstacle-avoiding autonomous unmanned aerial vehicle (UAV) systems with a new obstacle avoidance method (OAM) and localization method for autonomous UAVs for structural health monitoring (SHM) in GPS-denied areas. There are high possibilities of obstacles in the planned trajectory of autonomous UAVs used for monitoring purposes. A traditional UAV localization method with an ultrasonic beacon is limited to the scope of the monitoring and vulnerable to both depleted battery and environmental electromagnetic fields. To overcome these critical problems, a deep learning-based OAM with the integration of You Only Look Once version 3 (YOLOv3) and a fiducial marker-based UAV localization method are proposed. These new obstacle avoidance and localization methods are integrated with a real-time damage segmentation method as an autonomous UAV system for SHM. In indoor testing and outdoor tests in a large parking structure, the proposed methods showed superior performances in obstacle avoidance and UAV localization compared to traditional approaches.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Research Manitoba

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3