Crack analysis of tall concrete wind towers using an ad-hoc deep multiscale encoder–decoder with depth separable convolutions under severely imbalanced data

Author:

Deng Jianghua1ORCID,Hua Linxin2,Lu Ye2ORCID,Song Yang1,Singh Amardeep1,Che Jiao3,Li Yang1

Affiliation:

1. School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou, China

2. Department of Civil Engineering, Monash University, Melbourne, Australia

3. School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, China

Abstract

An accurate and timely cracking assessment, including the presence, location and crack geometric feature measurement, is crucial for evaluating concrete wind towers. Therefore, the early identification of cracks is a critical procedure in promptly evaluating structural integrity. This study proposed an ad-hoc encoder–decoder network based on DeepLabv3+ with depth separable convolutions to automatically segment cracks from real-world images captured from various concrete wind towers. The combined advantages of the improved DeepLabv3+ and the lightweight MobileNet v2 are suitable as a benchmark due to their high performance and universality. Four experiments were conducted to determine the model design choice and crack feature measurement capability: (1) six parametric tests using various pre-trained base networks and algorithm optimisers, (2) the influence of complex background noise (i.e., handwriting script) on crack segmentation performance, (3) comparative studies with cutting-edge pixel-wise segmentation models and (4) crack feature measurement (i.e., length and width). The research outcome demonstrated that DeepLabv3+ with MobileNet v2 can potentially be applied for efficient and accurate crack segmentation in concrete wind towers with complex backgrounds.

Funder

Changzhou Science and Technology Bureau

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3