A Structural Neural System for Real-time Health Monitoring of Composite Materials

Author:

Kirikera Goutham R.1,Shinde Vishal2,Schulz Mark J.3,Ghoshal Anindya4,Sundaresan Mannur J.5,Allemang Randall J.6,Jong Won Lee 7

Affiliation:

1. Center for Quality Engineering and Failure Prevention, Department of Mechanical Engineering, CAT Building, RM 327, 2137 N.Sheridan Road, Evanston, IL 60208,

2. 195 Clarksville Rd, Physical Acoustics Corporation, Princeton Jn, NewJersey, 08550

3. Smart Structures Bio-Nanotechnology Laboratory (SSBNL), 408B Rhodes Hall Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH USA, 45221

4. United Technology Research Center, 411, Silver Lane, MS 129-73 East Hartford, CT 06108, USA

5. Intelligent Structures and Mechanisms Laboratory, Department of Mechanical Engineering, North Carolina A&T state University, Greensboro, NC 27411, USA

6. Structrual Dynamics Research Laboratory, 593 Rhodes Hall, Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH, 45221

7. Korea Institute of Machinery and Materials, Daejeon, Korea

Abstract

A prototype structural neural system (SNS) is tested for the first time and damage detection results are presented in this study. The SNS is a passive online structural health monitoring (SHM) system that mimics the synaptic parallel computation networks present in the human biological neural system. Piezoelectric ceramic sensors and analog electronics are used to form neurons that measure strain waves generated by damage. The sensing of strain waves is similar to the proven nondestructive evaluation (NDE) technique of acoustic emission (AE) monitoring. Fatigue testing of a composite specimen on a four-point bending fiXture is performed, and the SNS is used to monitor the specimen for damage in real time. The prototype SNS used four sensors as inputs, but the number of inputs can be in the tens or hundreds depending on the type of SNS processor used. This is an area of continuing development. The SNS has two channels of signal output that are digitized and processed in a computer. The first output channel tracks the propagation of waves due to damage, and the second output channel provides the combined AE responses of the sensors. The data from these two channels are used to predict the location of damage and to qualitatively indicate the severity of the damage. Overall, this study shows that the SNS can detect damage growth in composites during operation of the structure, and the SNS architecture has the potential to tremendously simplify the AE technique for use in on-board SHM. Ten or more input neurons can be used, and still only two output channels are needed. Two levels of monitoring are possible using the SNS; a coarser SHM approach, or an on-board NDE approach. The SHM approach uses the SNS with a coarse grid of neurons to monitor and detect damage occurring in a general area during operation of the structure. The SNS will indicate where and when a more sensitive inspection is needed which can be done using ground-based NDE techniques. The on-board NDE approach uses the SNS with a fine coverage of neurons for highly sensitive NDE which continuously listens for damage and provides real-time processing and information about any damage in the structure and the performance limits and safety of the vehicle.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3