Improving the performance of tuned mass dampers by considering geometric nonlinear effects in an integrated identification-control approach

Author:

Ghaderi PedramORCID,Gholam SamanehORCID

Abstract

Abstract Tuned mass damper (TMD) is considered a common and effective device in structural control during catastrophic events such as earthquakes. This paper presents a promising method to improve the performance of TMD on vibratory structures with unknown parameters, by addressing the geometric nonlinear effects in an integrated identification-control approach. To evaluate the efficiency of this method, the reductions of the maximum displacement, shear force, acceleration of the top floor, and the mechanical energy of the structure are considered as performance indicators. Firstly, a proper relationship based on stiffness reduction is provided to consider geometric nonlinearity and perform second-order analysis. Secondly, the virtual synchronization method (VSM) is employed to identify the unknown parameters of the structures including stiffness and damping coefficients. Subsequently, an appropriate algorithm is developed to represent the integrated identification-control approach which utilizes the current properties of structures identified by VSM, for tuning the TMD. Afterward, these methods are employed to determine the circumstances where second-order analysis is preferable to first-order analysis, considering performance indicator differences. These circumstances deal with three variables including the characteristics of earthquakes and structures as well as the level of damage. To incorporate the first two variables, studies are conducted on several structures with different periods subjected to ten earthquakes with various frequency contents. Furthermore, for inclusion of the last variable, structures experience different levels of damage. As a result, this study determines the ranges based on the three mentioned variables wherein incorporating geometric nonlinear effects improves the performance of TMD and should be considered in structural analysis. Furthermore, similar relationships are provided for the assessment of the performance of the VSM. Finally, a study is provided to validate the performance of the integrated identification-control approach.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference41 articles.

1. Variation of deflection of steel high-rise structure due to P-Delta effect considering global slenderness ratio;Dinar;Int. J. Emerg. Technol. Adv. Eng.,2013

2. Stability and second-order non-linear analysis of 2D multi-column systems with semirigid connections: effects of initial imperfections;Aristizabal-Ochoa;Int. J. Non-Linear Mech.,2012

3. An equivalent stiffness approach for modelling the behaviour of compression members according to Eurocode 3;Barszcz;J. Constr. Steel Res.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3