An enhanced empirical Fourier decomposition method for bearing fault diagnosis

Author:

Zhu Danchen1ORCID,Liu Guoqiang1,Wu Xingyu2,Yin Bolong1

Affiliation:

1. Naval Petty Officer Academy, Bengbu, China

2. Naval University of Engineering, Wuhan, China

Abstract

To address the problem that bearing fault signals are usually contaminated by strong background interference due to multiple structures and complex transmission paths, which affects accurate fault feature extraction, an enhanced empirical Fourier decomposition technique was proposed in this paper. First, in order to weaken the influence of transmission path, the trend-line-extraction-based method was utilized in advance, which suppressed the signal distortion and background noise interference. Then, to achieve the appropriate parameter for the empirical Fourier decomposition, the correlation-coefficient-based decomposition number selection approach was constructed to avoid the existence of irrelevant modal functions. The band improvement strategy was proposed to reduce the invalid frequency bands with too narrow bandwidth during the decomposition process, the weighted harmonics significant index was utilized as the target, and the optimal modal components were also determined. Last, the fast Fourier transform was employed, and the bearing fault signatures were accurately detected. The simulation and experimental bearing fault signals were used for analysis; with the help of some comparisons, the analyzed results show that this method can effectively extract the fault characteristics of rolling element bearing from strong background interference.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3