Advanced deep learning framework for underwater object detection with multibeam forward-looking sonar

Author:

Ge Liangfu1,Singh Premjeet2,Sadhu Ayan1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The Western Academy for Advanced Research, Western University, London, ON, Canada

2. Department of Civil and Environmental Engineering, Western University, London, ON, Canada

Abstract

Underwater object detection (UOD) is an essential activity in maintaining and monitoring underwater infrastructure, playing an important role in their efficient and low-risk asset management. In underwater environments, sonar, recognized for overcoming the limitations of optical imaging in low-light and turbid conditions, has increasingly gained popularity for UOD. However, due to the low resolution and limited foreground-background contrast in sonar images, existing sonar-based object detection algorithms still face challenges regarding precision and transferability. To solve these challenges, this article proposes an advanced deep learning framework for UOD that uses the data from multibeam forward-looking sonar. The framework is adapted from the network architecture of YOLOv7, one of the state-of-the-art vision-based object detection algorithms, by incorporating unique optimizations in three key aspects: data preprocessing, feature fusion, and loss functions. These improvements are extensively tested on a dedicated public dataset, showing superior object classification performance compared to the selected existing sonar-based methods. Through experiments conducted on an underwater remotely operated vehicle, the proposed framework validates significant enhancements in target classification, localization, and transfer learning capabilities. Since the engineering structures have similar geometric shapes to the objects tested in this study, the proposed framework presents potential applicability to underwater structural inspection and monitoring, and autonomous asset management.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3