Abstract
As innovative technologies emerge, extensive research has been undertaken to develop new structural health monitoring procedures. The current methods, involving on-site visual inspections, have proven to be costly, time-consuming, labor-intensive, and highly subjective for assessing the safety and integrity of civil infrastructures. Mobile and stationary LiDAR (Light Detection and Ranging) devices have significant potential for damage detection, as the scans provide detailed geometric information about the structures being evaluated. This paper reviews the recent developments for LiDAR-based structural health monitoring, in particular, for detecting cracks, deformation, defects, or changes to structures over time. In this regard, mobile laser scanning (MLS) and terrestrial laser scanning (TLS), specific to structural health monitoring, were reviewed for a wide range of civil infrastructure systems, including bridges, roads and pavements, tunnels and arch structures, post-disaster reconnaissance, historical and heritage structures, roofs, and retaining walls. Finally, the existing limitations and future research directions of LiDAR technology for structural health monitoring are discussed in detail.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献