Time-domain Markov chain Monte Carlo–based Bayesian damage detection of ballasted tracks using nonlinear ballast stiffness model

Author:

Lam Heung-Fai12,Adeagbo Mujib Olamide1ORCID,Yang Yeong-Bin34

Affiliation:

1. Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong

2. School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China

3. School of Civil Engineering, Chongqing University, Chongqing, China

4. Department of Construction Engineering, National Yunlin University of Science and Technology, Douliu

Abstract

This article reports the development of a methodology for detecting ballast damage under a sleeper based on measured sleeper vibration following the Bayesian statistical system identification framework. To ensure the methodology is applicable under large amplitude vibration of the sleeper (e.g. under trainload), the nonlinear stress–strain behavior of railway ballast is considered. This, on one hand, significantly reduces the problem of modeling error, but, on the other hand, increases the number of uncertain model parameters. The uncertainty associated with the identified model parameters of the rail–sleeper–ballast system may be very high. To overcome this difficulty, the Markov chain Monte Carlo–based Bayesian model updating is adopted in the proposed methodology for the approximation of the posterior probability density function of uncertain model parameters. Owing to the nonlinear behavior of the system, the model updating is performed in the time domain instead of the modal domain. The applicability of the proposed damage detection methodology was first verified numerically using simulated impact hammer test data in two damaged cases perturbed with Gaussian white noise. Second, impact hammer tests of in situ sleepers in the full-scale in-door ballasted track test panel were carried out to collect data for the experimental verification of the proposed methodology. Artificial ballast damage was simulated under the target concrete sleeper by replacing normal-sized ballast particles (∼60 mm) by small-sized ballast particles (∼15 mm). The proposed methodology successfully identified the location and severity of ballast damage under the sleeper. From the calculated posterior marginal probability density functions of model parameters, one can quantify the uncertainties associated with the damage detection results. The proposed methodology is an essential step in the development of a long-term railway track health monitoring system utilizing train-induced vibration.

Funder

Research Grants Council of the Hong Kong Special Administrative Region, China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3