Affiliation:
1. Department of Mechanical Engineering, University of Houston, Houston, TX, USA
2. Department of Engineering Technology, University of Houston, Houston, TX, USA
Abstract
Recently, in the field of structural health monitoring, the detection of bolted connection looseness through percussion-based method and machine learning technology has received much attention due to the advantages of removing the requirement of sensor installation and potential for automation. However, there are few such research which are performed in the underwater environment. The paper proposes a new method, Feature-reduced Multiple Random Convolution Kernel Transform (FM-ROCKET), to identify the looseness level of the underwater bolted connections based on the percussion-induced sound (audio signal). By integrating deep learning (DL) and shallow learning, the FM-ROCKET model uses the 1D convolutional layer (a DL method) to extract features from the percussion-induced audio signal and adopts the rigid classifier (linear classifier, a shallow learning method) to classify the features. Five different preload levels of the bolted flange are considered. A hammer is utilized to tap the flange surface and the continuous percussion-induced audio signal is collected by a smartphone in an underwater environment. After the audio signal segmentation, single-hit audio signals are fed into the FM-ROCKET model. To verify the effectiveness of the proposed method, three case studies are conducted on two flanges. In case study I, the proposed method slightly outperforms other DL-based methods under different training/test splitting ratios. In case studies II and III, the proposed method is far more effective than other DL-based methods on independent and different test sets. The results demonstrate the superiority of the FM-ROCKET model in the underwater detection of bolted flange looseness. To the best of our knowledge, this article is the first attempt to address the detection of bolted flange looseness in the underwater environment by combining percussion-based method, DL, and shallow learning.
Funder
Texas Commission on Environmental Quality
Subject
Mechanical Engineering,Biophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献