An alternative quantification of the value of information in structural health monitoring

Author:

Chadha Mayank1,Hu Zhen2,Todd Michael D1ORCID

Affiliation:

1. Department of Structural Engineering, University of California, San Diego, La Jolla, CA, USA

2. University of Michigan Dearborn, Dearborn, MI, USA

Abstract

Analogous to an experiment, a structural health monitoring (SHM) system may be thought of as an information-gathering mechanism. Gathering the information that is representative of the structural state and correctly inferring its meaning helps engineers (decision-makers) mitigate possible losses by taking appropriate actions (risk-informed decision-making). However, the design, research, development, installation, maintenance, and operation of an SHM system are an expensive endeavor. Therefore, the decision to invest in new information is rationally justified if the reduction in the expected losses by utilizing newly acquired information is more than the intrinsic cost of the information acquiring mechanism incurred over the lifespan of the structure. This article investigates the economic advantage of installing an SHM system for inference of the structural state, risk, and lifecycle management by using the value of information (VoI) analysis. Among many possible choices of SHM system designs (different information-gathering mechanisms), pre-posterior decision analysis can be used to select the most feasible design. Traditionally, the cost–benefit analysis of an SHM system is carried out through pre-posterior decision analysis that helps one evaluate the benefit of an experiment or an information-gathering mechanism using the expected value of information metric. This study proposes an alternate normalized metric that evaluates the expected reward ratio (benefit/gain of using an SHM system) relative to the investment risk (cost of SHM over the lifecycle). The analysis of evaluating the relative benefit of various SHM system designs is carried out by considering the concept of the VoI, by performing pre-posterior analysis, and the idea of a perfect experiment is discussed.

Funder

Engineer Research and Development Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3