Diagnostics and prognostics using switching Kalman filters

Author:

Reuben Lim Chi Keong12,Mba David1

Affiliation:

1. Department of Power and Propulsion, Cranfield University, Cranfield, UK

2. Air Engineering and Logistics Department, Republic of Singapore Air Force, Singapore

Abstract

The use of condition monitoring data for diagnostic and prognostic of vehicle health has been growing with increasing use of health and usage monitoring systems. In this article, an approach using the switching Kalman filter framework is explored for both diagnostic and prognostic using condition monitoring data under a single framework. The switching Kalman filter uses multiple dynamical models each describing a different degradation process. The most probable underlying degradation process is then inferred from the observed condition monitoring data using Bayesian estimation. By using the dynamical behavior of the degradation process, pre-established fault detection threshold is no longer required. This approach also provides maintainers with more information for decision-making as a probabilistic measure of the degradation processes is available. This helps maintainers to predict remaining useful life more accurately by distinguishing between the degradation states and performing prediction only when unstable degradation is detected. The proposed switching Kalman filter approach is applied onto sets of condition monitoring data from gearbox bearings that were found defective from the Republic of Singapore Air Force AH64D helicopter. The use of in-service data in a practical scenario shows that the switching Kalman filter approach is a promising tool for maintenance decision-making.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3