Unsupervised novelty detection–based structural damage localization using a density peaks-based fast clustering algorithm

Author:

Cha Young-Jin1,Wang Zilong1

Affiliation:

1. Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada

Abstract

Within machine learning, several structural damage detection and localization methods based on clustering and novelty detection methods have been proposed in the recent years in order to monitor mechanical and civil structures. In order to train a machine learning model, an unsupervised mode is preferred because it only requires sufficient normal data from the intact states of a structure for training, and the testing abnormal data from various damage states are generally quite rare. With an unsupervised training mode, the capability of detecting structural damage mainly depends on the identification of abnormal data from the testing data. This identification process is termed unsupervised novelty detection. The premise of unsupervised novelty detection is that a large volume of a normal data set is available first to train a normal model that is established by machine learning algorithms. Then, the trained normal model can be used to identify abnormal data from future testing data. In this article, a new structural damage detection and localization method is proposed using a density peaks-based fast clustering algorithm. In order to realize damage detection, the original density peaks-based fast clustering algorithm is modified to an unsupervised machine learning method by adding training and testing processes. Furthermore, to improve the performance of the proposed method, the Gaussian kernel function of radius is introduced to calculate the local density of data points, and a new damage-sensitive feature using a continuous wavelet transform is also proposed. Damage-sensitive features are extracted from the measured data through sensors installed on a laboratory-scale steel structure. Extensive experimental studies are carried out under various structural damage scenarios in order to validate the performance of the proposed method. The proposed density peaks-based fast clustering method shows satisfactory performance with regard to damage localization under various damage scenarios as compared to a traditional approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3