A research on an improved Unet-based concrete crack detection algorithm

Author:

Zhang Lingxin1,Shen Junkai1ORCID,Zhu Baijie1

Affiliation:

1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China

Abstract

Crack is an important indicator for evaluating the damage level of concrete structures. However, traditional crack detection algorithms have complex implementation and weak generalization. The existing crack detection algorithms based on deep learning are mostly window-level algorithms with low pixel precision. In this article, the CrackUnet model based on deep learning is proposed to solve the above problems. First, crack images collected from the lab, earthquake sites, and the Internet are resized, labeled manually, and augmented to make a dataset (1200 subimages with 256 × 256 × 3 resolutions in total). Then, an improved Unet-based method called CrackUnet is proposed for automated pixel-level crack detection. A new loss function named generalized dice loss is adopted to detect cracks more accurately. How the size of the dataset and the depth of the model affect the training time, detecting accuracy, and speed is researched. The proposed methods are evaluated on the test dataset and a previously published dataset. The highest results can reach 91.45%, 88.67%, and 90.04% on test dataset and 98.72%, 92.84%, and 95.44% on CrackForest Dataset for precision, recall, and F1 score, respectively. By comparing the detecting accuracy, the training time, and the information of datasets, CrackUnet model outperform than other methods. Furthermore, six images with complicated noise are used to investigate the robustness and generalization of CrackUnet models.

Funder

Heilongjiang Touyan Innovation Team Program

national key research and development program of china stem cell and translational research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3