Affiliation:
1. School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Abstract
In concrete structures, surface cracks are important indicators of structural durability and serviceability. Generally, concrete cracks are visually monitored by inspectors who record crack information such as the existence, location, and width. Manual visual inspection is often considered ineffective in terms of cost, safety, assessment accuracy, and reliability. Digital image processing has been introduced to more accurately obtain crack information from images. A critical challenge is to automatically identify cracks from an image containing actual cracks and crack-like noise patterns (e.g. dark shadows, stains, lumps, and holes), which are often seen in concrete structures. This article presents a methodology for identifying concrete cracks using machine learning. The method helps in determining the existence and location of cracks from surface images. The proposed approach is particularly designed for classifying cracks and noncrack noise patterns that are otherwise difficult to distinguish using existing image processing algorithms. In the training stage of the proposed approach, image binarization is used to extract crack candidate regions; subsequently, classification models are constructed based on speeded-up robust features and convolutional neural network. The obtained crack identification methods are quantitatively and qualitatively compared using new concrete surface images containing cracks and noncracks.
Funder
Ministry of Land, Infrastructure and Transport of Korean government
Subject
Mechanical Engineering,Biophysics
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献