The use of circumferential guided waves to monitor axial cracks in pipes

Author:

Rodgers Euan Craig1ORCID,Mariani Stefano1,Cawley Peter1ORCID

Affiliation:

1. Imperial College London, London, UK

Abstract

Guided wave testing is in routine use to detect corrosion, particularly in the oil and gas sector, but the detection of axial cracking is difficult using the axially propagating waves commonly used for corrosion detection. This paper presents a novel guided wave monitoring technique for the detection of axial cracking in piping. Circumferential SH0 waves, travelling around the circumference were used in a monitoring configuration to detect axial defects in a 6 inch schedule 80 steel pipe. Finite Element (FE) analysis showed that both the defect reflection and the decline in the transmitted SH0 wave can be used for defect detection. Baseline subtraction was utilised to produce residual signals that can be better analysed for small defect reflections. The Root-Mean-Square (RMS) of the residual signal after baseline subtraction was found to be the most satisfactory means of monitoring defect progression. An amplification effect was identified where the residual signal is compounded by continued interaction with the defect on each revolution of the incident wave. The FE predictions were validated by an experiment in which an Electrical Discharge Machining (EDM) notch was grown in four stages. Temperature compensation using Location Specific Temperature Compensation (LSTC) was applied to the experimental data, allowing residuals to be compared for a ∼10 °C temperature swing over a monitoring period of over 2 months. It was determined that a 10 mm long (∼23% of wavelength), 5 mm deep (∼45% of the wall thickness) defect at an axial offset from the line of the transducers of 1.5 wavelengths (65 mm) would be readily detectable with a very high Probability of Detection (POD) and virtually no chance of a false call. Therefore, this novel guided wave monitoring system for axial crack detection is likely to be attractive for applications in a range of industries for its sensitivity to axial cracking combined with large coverage from a single transducer location.

Funder

EPSRC Doctoral Training Centre in Non-Destructive Evaluation

Rolls-Royce

Royal Commission for the Exhibition of 1851

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3