Piezoelectric Active Sensing-Based Pipeline Corrosion Monitoring Using Singular Spectrum Analysis

Author:

Yang Dan12ORCID,Wang Hu23,Wang Tao13ORCID,Lu Guangtao13ORCID

Affiliation:

1. Key Laboratory for Metallurgical Equipment and Control of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

3. Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Pipelines are an important transportation form in industry. However, pipeline corrosion, particularly that occurring internally, poses a significant threat to safe operations. To detect the internal corrosion of a pipeline, a method utilizing piezoelectric sensors alongside singular spectrum analysis is proposed. Two piezoelectric patches are affixed to the exterior surface of the pipeline, serving the roles of an actuator and a sensor, respectively. During the detection, the signals excited by the actuator are transmitted through the pipeline’s wall and are received by PZT2 through different paths, and the corresponding piezoelectric sensor captures the signals. Then, the response signals are denoised by singular spectrum analysis, and the first several wave packets in the response signals are selected to establish a feature for pipeline corrosion detection. At last, the envelope area of the selected packets is calculated as a feature to detect corrosion. To validate the proposed method, corrosion monitoring experiments are performed. The experimental results indicate that the envelope area of the first several wave packets from the response signals, following singular spectrum analysis, can serve as a feature to assess the degree of pipeline corrosion, and the index has a monotonic relationship with the corrosion depth of the pipeline. This method provides an effective way for pipeline corrosion monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3