Defect detection in guided wave signals using nonlinear autoregressive exogenous method

Author:

Wang Kangwei12ORCID,Zhang Jie2,Shen Yi1,Karkera Benjamin2,Croxford Anthony J2ORCID,Wilcox Paul D2

Affiliation:

1. Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, P.R. China

2. Department of Mechanical Engineering, University Walk, University of Bristol, Bristol, UK

Abstract

To perform long-term structural health monitoring, a method based on a nonlinear autoregressive exogenous network is used to learn the features present in signals acquired from a pristine structure. When a subsequent measured signal is input to the trained nonlinear autoregressive exogenous network, the output is a prediction of the equivalent signal from a pristine structure. The residual when the pristine predicted signal is subtracted from the measured signal is used for defect detection and localization. A methodology of how to train, test and assess a nonlinear autoregressive exogenous network for guided wave signals is introduced and applied to experimental data obtained over a period of 8 years from a sparse array of guided wave sensors deployed on a steel storage tank. A separate nonlinear autoregressive exogenous model is trained for each sensor pair in the array using data captured in 2012. The method is first tested using data from a single pair of sensors. Defect signals are synthesized by superposing simulated responses from defects onto later experimental signals obtained from the real structure. The test results for the nonlinear autoregressive exogenous method show better detection performance than those from the optimal baseline selection method, in terms of receiver operating characteristic curves. The detection performance of the nonlinear autoregressive exogenous method is further assessed on signals from the whole sensor array, again with simulated defect responses superposed. It is shown that good detection and localization performance can be achieved by combining the nonlinear autoregressive exogenous residual signals from different sensor pairs. The nonlinear autoregressive exogenous method is tested on experimental data acquired at intervals over the following 7 years as the condition of the tank naturally degrades. Indications from localized corrosion are observed. Finally, an artificial localized anomaly is added to the tank and is visible at the correct location in the image formed using the nonlinear autoregressive exogenous method.

Funder

Lloyd’s Register Foundation and The Alan Turing Institute Data-Centric Engineering Programme

China Scholarship Council

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3