Active sensing ultrasonic guided wave-based damage diagnosis via stochastic stationary time-series models

Author:

Ahmed Shabbir1ORCID,Kopsaftopoulos Fotis1ORCID

Affiliation:

1. Intelligent Structural Systems Laboratory (ISSL), Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract

In the context of acousto-ultrasonic guided wave-based structural health monitoring, a statistical damage detection and identification (collectively referred to as damage diagnosis) framework for metallic and composite materials is proposed. Stochastic stationary time-series autoregressive (AR) models are used to model the ultrasonic wave propagation between piezoelectric actuator-sensor pairs on structural components and enable the damage diagnosis process via the use of the AR estimated parameters and corresponding covariance matrices. The proposed method exploits guided wave signals including the reflection parts, and thus the extraction of the S0 and/or A0 modes is not necessary, while the statistical properties and variation of estimated model parameters with respect to damage intersecting and non-intersecting wave propagation paths are presented and assessed. To investigate the method’s performance and robustness, two variations are proposed based on the singular value decomposition and principal component analysis. The obtained modified AR parameter vectors are then used to estimate appropriate statistical characteristic quantities used to enable the damage detection and identification tasks. The diagnosis is based on properly defined statistical hypotheses decision-making schemes and predetermined type I error probabilities. The performance and applicability of the method are explored experimentally via a series of tests on aluminum and composite coupons under various damage scenarios for damage intersecting and non-intersecting paths. The results of the present study demonstrated the effectiveness and robustness of the proposed modeling and diagnostic framework for guided wave-based damage diagnosis that can be implemented in a potentially automated way.

Funder

U.S. Air Force Office of Scientific Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3