Statistical Evaluation of Modified Electrical Resistance Change Method for Delamination Monitoring of CFRP Plate

Author:

Iwasaki Atsushi1,Todoroki Akira2

Affiliation:

1. Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656 Japan

2. Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro, Tokyo 152-8552, Japan

Abstract

The present paper employs the electric resistance change method for monitoring the location and size of a delamination crack in graphite/epoxy composite laminates. The authors have revealed that the electric resistance change method with response surfaces is very effective experimentally and analytically. For the estimations of delamination locations, however, large error of the estimations still remains. FEM analyses revealed that the standardizations of the electric resistance changes are very effective to obtain high performance identifications. In this study, the new electric resistance change method of high performance identification of delaminations is applied to a plate-type specimen with an embedded delamination of cross-ply and quasi-isotropic laminates. Ten electrodes made from copper foil are mounted on the specimen top surfaces. The electric resistance changes are measured using a conventional strain gage amplifier. Response surfaces are adopted as a tool for solving inverse problems to estimate the location and size of delamination crack from the measured electric resistance changes of all segments between electrodes. Statistical analysis was performed to result of identification using the response surface. As a result, the present method successfully provides estimations of location and size of the embedded delamination for graphite/epoxy laminated composites.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3