Spatial electric potential distributions and damage mapping in 3D carbon fiber/epoxy angle-interlock woven composites with different current directions

Author:

Han Chaofeng1ORCID,Ke Yanan2,Guo Jinhui2,Shi Baohui3,Yu Bin1,Jia Lin1,Liu Jie1

Affiliation:

1. College of Textiles, Henan University of Engineering, Zhengzhou, China

2. College of Textiles, Donghua University, Shanghai, China

3. Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong, PR China

Abstract

Exploring electric potential distributions in carbon fiber reinforced polymer composites (CFRPs) is important in electrical-based structural health monitoring for in situ damage detection. Here we investigate influences of current injection angles, electrode locations, and current injection pairs on the electric potential distributions in 3D carbon fiber/epoxy angle-interlock woven (AIW) composites. We have conducted different types of electric potential measurements and established a linear anisotropic conductivity model to reveal the electric potential distributions. It was found that the curved warp yarns form many contacts and increase the conduction path, leading to lower electric conductivity and flatter potential field than those of the weft yarn with straight alignment. The orientation and value of surface electric potential field change depend on current flow direction caused by current injection mode (CIM) and conduction mechanism due to yarn arrangement. Oblique current directed at an angle of 45° is more sensitive in indicating interior damage than that of current parallel to the yarn direction. It is recommended that the oblique current injection should be used to provide effective damage sensing for CFRPs with complex structures.

Funder

National Natural Science Foundation of China

2022 Plan for the Project of Introducing Urgently Needed Talents in Shandong’s Key Supporting Regions

Natural Science Foundation of Shandong Province of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3