Few-shot pump anomaly detection via Diff-WRN-based model-agnostic meta-learning strategy

Author:

Zou Fengqian1,Sang Shengtian1,Jiang Ming1,Li Xiaoming1,Zhang Haifeng12ORCID

Affiliation:

1. MEMS Center, Harbin Institute of Technology, Harbin, China

2. Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, China

Abstract

As a critical component in agriculture, industry, and the military, pump anomaly detection has recently aroused wide attention, which requires deep and abundant development and application. Researchers emphasize deeper networks that are long vast computational resources despite insufficient training samples prepared. To break through this obstacle above, we propose a few-shot model-agnostic meta-learning strategy (MAMLS) model to mitigate the data scarcity problem. Inspired by the diffusive ordinary differential equations (ODEs) and Wide-Resnet (WRN), we made great strides by connecting diffusion (Diff) mechanism and self-adaptive Lr with MAMLS. We generate two classical synthetic datasets (circle and spiral) to clarify the diffusion algorithm’s capability to enhance the relationships and weaken the noise. The experimental results under synthetic data confirm that accuracy quickly reached 99% after several iterations. In an actual case anomaly detection study on the pumps simulation platform, the proposed Diff-WRN-MAMLS brings substantial advantages in saving hardware resources. Compared to current models, our model achieves 98% accuracy in 9-way 25-shot tasks. In the operating efficiency experiment, our algorithm only consumed 14.37 quality factors. The final experiment with four state-of-the-art model-agnostic meta-learning (MAML)-enhanced methods demonstrates the highest reliable test accuracy in different cases, reaching 98.5, 97.8, and 98.4%, respectively. Results showed that the proposed method will generalize surprisingly well in anomaly detection in future research.

Funder

Powerchina Equipment Research Institute

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3