A Novel Fault Diagnosis Method of High-Speed Train Based on Few-Shot Learning

Author:

Wu Yunpu1ORCID,Chen Jianhua1,Lei Xia1ORCID,Jin Weidong2

Affiliation:

1. School of Electrical and Electronic Information, Xihua University, Chengdu 610039, China

2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract

Ensuring the safe and stable operation of high-speed trains necessitates real-time monitoring and diagnostics of their suspension systems. While machine learning technology is widely employed for industrial equipment fault diagnosis, its effective application relies on the availability of a large dataset with annotated fault data for model training. However, in practice, the availability of informational data samples is often insufficient, with most of them being unlabeled. The challenge arises when traditional machine learning methods encounter a scarcity of training data, leading to overfitting due to limited information. To address this issue, this paper proposes a novel few-shot learning method for high-speed train fault diagnosis, incorporating sensor-perturbation injection and meta-confidence learning to improve detection accuracy. Experimental results demonstrate the superior performance of the proposed method, which introduces perturbations, compared to existing methods. The impact of perturbation effects and class numbers on fault detection is analyzed, confirming the effectiveness of our learning strategy.

Funder

Science and Technology Department of Sichuan Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3